Treasury Markets

Kevin Crotty
BUSI 448: Investments

Where are we?

Last time:

- Empirical facts about equities

Today:

- Treasury market basics
- Term structure
- Spot rates

Treasury Securities

Bills

- Bills
- Maturity of 1 year or less (1, 3, 6, 12 months)
- Usually issued as discount securities
- Taxes - exempt from state and local income taxes
- Small denomination - can purchase in $\$ 100$ increments from Treasury Direct

Bonds and Notes

- Notes
- Maturity between 2 years and 10 years (2, 3, 5, 7, 10 years)
- Coupon securities (semiannual)
- Bonds
- Maturity greater than 10 years (20, 30 years)
- Coupon securities

TIPS and STRIPS

- Treasury inflation protection securities (TIPS)
- Principal is indexed to consumer price index
- Maturities of 5, 10, 30 years
- STRIPS (Separate Trading of Registered Interest and Principal Securities)
- Allows individual component of Treasuries to be traded
- Improves liquidity for zero-coupon Treasury markets

Historical yields

- can pull data from FRED at St. Louis Fed
- 3-month Tbill series

```
1 import pandas as pd
2 ~ f r o m ~ p a n d a s ~ d a t a r e a d e r ~ i m p o r t ~ D a t a R e a d e r ~ a s ~ p d r
3 y3mo = pdr("TB3MS", "fred", start="1929-12-01")
```


Treasury Curve

Term structure of rates

- Interest rates (yields) of different maturity bonds are generally different
- For instance, 10-year bond may have a different yield than a 2 -year note
- The yield curve is the plot of yields as a function of time to maturity
- The term structure of rates is the relation between yields and maturity

Key aspects of the term structure

1. Level
2. Slope
3. Curvature

Historical Yield Curves

- dashboard: yield curves

Time-series of yields

- What do you notice prior to the shaded recessions?

Some fixed income empirical facts

Size of the market

- SIFMA link

Stocks, bonds, and gold returns

- dashboard: stocks/bonds/gold

Spot rate curve

Spot rates

- Spot rates are the discount rates associated with CFs of a particular maturity.

Two methods to get them:

- Use zero-coupon bonds (i.e., Tbills or STRIPS)
- Bootstrap them from coupon bonds

Bond pricing revisited

If $z_{1}, z_{2}, \ldots, z_{T}$ are maturity-specific riskless spot rates, then the bond price is:

$$
\begin{gathered}
P(\mathbf{z})=\frac{C / m}{\left(1+z_{1}\right)}+\frac{C / m}{\left(1+z_{2}\right)^{2}}+\ldots+\frac{C+F A C E}{\left(1+z_{T}\right)^{T}} \\
P(\mathbf{z})=\sum_{t=1}^{T} \frac{C / m}{\left(1+z_{t}\right)^{t}}+\frac{F A C E}{\left(1+z_{T}\right)^{T}}
\end{gathered}
$$

where

- C / m is the periodic coupon payment
- m is the compounding periods per year
- T is the total number of payments (\# years $\cdot m$)

Spot rates from zero-coupon bonds

- A zero-coupon bond pays no coupons

$$
P\left(z_{t}\right)=\frac{F A C E}{\left(1+z_{t}\right)^{t}}
$$

- Using traded prices, we can solve for z_{t}

$$
z_{t}=\left(\frac{F a c e}{P\left(z_{t}\right)}\right)^{1 / t}-1
$$

Spot rates from coupon bonds

- Bootstrapping: method of extracting spot rates from coupon bond prices.
- Iterative procedure: 1 st solve for z_{1}, then z_{2} using $z_{1} \ldots$
- To get spot rate z_{t}, we must know $z_{1}, z_{2}, \ldots, z_{t-1}$:

$$
z_{t}=\left(\frac{C F_{t}}{P V\left(C F_{t}\right)}\right)^{1 / t}-1
$$

- $P V\left(C F_{t}\right)=P_{t}-\sum_{i=1}^{t-1} \frac{C F_{i}}{\left(1+z_{i}\right)^{i}}$
- P_{t} is the price of the coupon bond maturing at time t.

Example

Bond	Price	Coupon Rate	Maturity	Face Value
A	97.5	0%	0.5	100
B	95	0%	1.0	100
C	955	2.5%	1.5	1,000
D	1,000	5.75%	2	1,000

Assume semiannual coupon payments and no credit risk.

1. Determine the spot rates for the four periods
2. What is the fair price of a 2 -year 10% coupon bond with a face value of $\$ 1,000$ if it pays annual coupons?

For next time: Arbitrage

谷RICEIBUSINESS

