Arbitrage

Kevin Crotty
BUSI 448: Investments

Where are we?

Last time:

- Treasury market basics
- Term structure
- Spot rates

Today:

- Arbitrage

Arbitrage and pricing

No-arbitrage Pricing

- Arbitrage is a trade that generates positive profits in some state of the world and generates losses in no state of the world.
- Bootstrapping is based on the principle of no-arbitrage pricing.
- First, assume a pricing relationship between two or more assets
- Second, try to construct an arbitrage from that relation
- If you can, then the assumed relationship cannot be true (or you should trade!)

Law of One Price

- Two assets that generate the same cash flows should have the same price.
- We can try to form a replicating portfolio with the same cash flows as the security we are trying to value.

Example \#1

Example

Suppose we have a 1-year bond with cash flows of $\$ 15$ in 6 months and $\$ 115$ in one year that costs $\$ 125$.

- What is the spot-rate implied price of this bond?
- Can we replicate the cash flows of this bond with a portfolio of A, B, C, D?

From last time: Bonds A, B, C, D

Bond	Price	Coupon Rate	Maturity	Face Value
A	97.5	0%	0.5	100
B	95	0%	1.0	100
C	955	2.5%	1.5	1,000
D	1,000	5.75%	2	1,000

Replicating portfolio

- We only need to use bonds A and B since the target bond is a one-year bond.
- Let x_{A} denote the amount invested in bond A and x_{B} be the amount invested in bond B.
- We want to solve the following system of equations (one for each time period with payments for the 1-year target bond):

$$
\begin{aligned}
& x_{A} \cdot A_{1}+x_{B} \cdot B_{1}=15 \\
& x_{A} \cdot A_{2}+\underset{\text { BUSI448 }}{x_{B}} \cdot B_{2}=115
\end{aligned}
$$

Replicating portfolio

$$
\begin{aligned}
& x_{A} \cdot 100+x_{B} \cdot 0=15 \\
& x_{A} \cdot 0+x_{B} \cdot 100=115
\end{aligned}
$$

Solving for x_{A} and x_{B} :

$$
\begin{aligned}
& x_{A}=\frac{15}{100}=0.15 \\
& x_{B}=\frac{115}{100}=1.15
\end{aligned}
$$

Market price versus replicating portfolio value

- The replicating portfolio has a value of $\$ 123.875$
- The actual 1-year bond price is $\$ 125$.
- Can we construct an arbitrage trade?

The arbitrage trade

- Sell the $(15,115)$ 1-year bond
- Buy the replicating portfolio
- For each unit of the 1-year bond:
- buy 0.15 of A
- buy 1.15 of B
- Profit of $\$ 1.125$ per $\$ 100$ face in 1-year bond

Example \#2

Replication with coupon bonds

What did we do above?

- We solved a system of equations to create a portfolio of bonds that each mature at different periods in order to replicate the cash flows of our 'target' bond.
- Can we form replicating portfolios using coupon bonds as well?

YES!

Example (2-yr annual bond)

- Suppose the price of the 2-year bond from last time was actually $\$ 1,050$. Let's call this bond V.
- 2-year annual bond with face of 1,000 and coupon rate of 10%.
- Can we construct an arbitrage trade?
- Again, the key is to construct a portfolio of bonds A, B, C , and D that replicates the CFs of the 2-year annual bond.

Replicating the two-year bond CFs

$$
\begin{aligned}
& x_{A} \cdot A_{1}+x_{B} \cdot B_{1}+x_{C} \cdot C_{1}+x_{D} \cdot D_{1}=V_{1} \\
& x_{A} \cdot A_{2}+x_{B} \cdot B_{2}+x_{C} \cdot C_{2}+x_{D} \cdot D_{2}=V_{2} \\
& x_{A} \cdot A_{3}+x_{B} \cdot B_{3}+x_{C} \cdot C_{3}+x_{D} \cdot D_{3}=V_{3} \\
& x_{A} \cdot A_{4}+x_{B} \cdot B_{4}+x_{C} \cdot C_{4}+x_{D} \cdot D_{4}=V_{4}
\end{aligned}
$$

Plugging in the cash flows for each bond

$$
\begin{array}{cccccccc}
x_{A} \cdot 100 & + & x_{B} \cdot 0 & + & x_{C} \cdot 12.5 & + & x_{D} \cdot 28.75 & = \\
x_{A} \cdot 0 & + & x_{B} \cdot 100 & + & x_{C} \cdot 12.5 & + & x_{D} \cdot 28.75 & = \\
x_{A} \cdot 0 & + & x_{B} \cdot 0 & + & x_{C} \cdot 1012.5 & + & x_{D} \cdot 28.75 & = \\
x_{A} \cdot 0 & + & x_{B} \cdot 0 & + & x_{C} \cdot 0 & + & x_{D} \cdot 1028.75 & = \\
0
\end{array}
$$

Solving for the position sizes x

- The intuition is the same as the two-period bond, but the math is more annoying.
- Option \#1: grind through the algebra
- what if there are more than 4 periods?!?
- Option \#2: let python solve it for us with matrices

Replicating portfolio w/ matrices

The system of equations above can be written in matrix notation as:

$$
\mathbf{x} \cdot \mathbf{C F}=\mathbf{c f}
$$

- $\mathbf{x}=\left[\begin{array}{llll}x_{A} & x_{B} & x_{C} & x_{D}\end{array}\right]$
- $\mathbf{C F}=\left[\begin{array}{llll}A_{1} & A_{2} & A_{3} & A_{4} \\ B_{1} & B_{2} & B_{3} & B_{4} \\ C_{1} & C_{2} & C_{3} & C_{4} \\ D_{1} & D_{2} & D_{3} & D_{4}\end{array}\right]$
- $\mathbf{c f}=\left[\begin{array}{llll}V_{1} & V_{2} & V_{3} & V_{4}\end{array}\right]$

Solving for the position sizes x in python

We can solve for \mathbf{x} in the system of equations

$$
\begin{gathered}
\mathbf{x} \cdot \mathbf{C F}=\mathbf{c f} \\
\text { in python using cf @ np.linalg.inv }(C F)!
\end{gathered}
$$

Market price versus replicating portfolio value

- The replicating portfolio has a value of $\$ 1,076.82$
- look familiar?
- The actual 2-year bond price is $\$ 1,050$.
- Can we construct an arbitrage trade?

The arbitrage trade

- Buy the 2-year bond
- Sell the replicating portfolio
- For every unit of the 2-year bond:
- buy 0.304 of A
- sell 0.696 of B
- buy 0.030 of C
- sell 1.069 of D
- Profit of $\$ 26.82$ for each unit of 2-year bond bought

For next time: Markets, Trading, \& Adverse Selection

, RICEI BUSINESS

