Leverage and Margin

Kevin Crotty
BUSI 448: Investments

Where are we?

Last time:

- Adverse Selection
- Market structure
- Liquidity

Today:

- Leverage
- Margin
- Repurchase agreements

Leverage

Leverage

Leverage is investing borrowed money.

- The return, good or bad, on every $\$ 1$ of your own money is amplified.

Example

- Initial capital to invest of $\$ 100,000$ + borrow $\$ 50,000$
- Buy $\$ 150,000$ of stocks

Assets	Liab/Eq		
Stocks	150,000	Debt	50,000
		Equity	100,000
Total	150,000	Total	150,000

- Leverage ratio $=\frac{\text { Assets }}{\text { Equity }}$
- Example is levered 1.5 to 1
- More jargon: 50\% leverage ${ }_{\text {esI } 48}$

One possible future

Suppose the stocks go up 10\% and you're charged 2\% interest on the loan (rolled into the debt balance)

Assets	Liab/Eq		
Stocks	165,000	Debt	51,000
		Equity	114,000
Total	165,000	Total	165,000

- The return is $14 \%(114,000 / 100,000-1)$.
- You made 10% plus one half of (10% minus 2%)

$$
=0.10+0.5(0.10-0.02)=0.14
$$

- "one-half" because you borrowed 50%.

Levered return

Let $w=\frac{\text { Debt }}{\text { Initial Equity }}$.
Levered portfolio return is:

$$
-w \cdot r_{\text {borrow }}+(1+w) \cdot r_{\text {stock }}
$$

We can rewrite this as:

$$
r_{\text {stock }}+w \cdot\left(r_{\text {stock }}-r_{\text {borrow }}\right)
$$

The return in the example is:

$$
0.10+0.5(0.10-0.02)=0.14
$$

Another possible future

- Suppose the stocks fell by 10%.
- You lose 10% plus one half of ($-10 \%-2 \%$).
- So, your loss is 16% on your $\$ 100,000$ investment.

Assets	Liab/Eq		
Stocks	135,000	Debt	51,000
		Equity	84,000
Total	135,000	Total	135,000

- Check: 84,000/100,000 -1 = -16\%.

The good and the bad

- You always make the stock return plus the fraction borrowed times (stock return minus borrowing rate).
- With 50% leverage and a 2% interest charge,

$$
\begin{aligned}
& +10 \% \rightarrow+14 \% \\
& -10 \% \rightarrow-16 \%
\end{aligned}
$$

Levered S\&P Returns

- SPY with leverage in today's notebook

Margin

Margin

Margin: borrowing from your broker to purchase securities

- Percent margin $=\frac{\text { Equity }}{\text { Total Asset Value }}$
- Initial margin requirement set by the Fed's Reg T: 50\%
- Broker may set a higher initial margin requirement
- Maintenance margin requirement set by broker
- Protects broker agains default by borrower if asset values drop.

Example with margin

Initial balance sheet

Assets	Liab/Eq		
Stocks	150,000	Margin loan	50,000
		Equity	100,000
Total	150,000	Total	150,000

$$
\begin{aligned}
\text { Percent Margin } & =\frac{\text { Equity }}{\text { Total Asset Value }} \\
& =\frac{100,000}{150,000} \\
& =66.67 \%
\end{aligned}
$$

Example with price drop of 10%

Balance sheet after stocks drop by 10\% (and margin interest of 2% rolled into loan)

Assets	Liab/Eq		
Stocks	135,000	Margin loan	51,000
		Equity	84,000
Total 135,000	Total	135,000	
		Equity	
Percent Margin	$=\frac{\text { Total Asset Value }}{}$		
	$=\frac{84,000}{135,000}$		
	$\underline{y s} 62.22 \%$		

Margin Calls

A margin call occurs when the percent margin falls below the maintenance margin set by the broker.

- Suppose the maintenance margin on the account in our example is 35%.
- How much could the stock value drop before a margin call occurs? (Ignore the interest expense on the margin loan.)

A margin call occurs when:

$$
\frac{\text { Equity }}{\text { Total Asset Value }}<\underset{\text { Busir4s }}{<\text { Maintenance Margin } . ~}
$$

Margin Calls

- $S_{0}=$ initial stock value
- $L=$ margin loan amount
- $M M=$ maintenance margin percentage
- $r=$ stock return

A margin call occurs when:

$$
\frac{S_{0}(1+r)-L}{S_{0}(1+r)}<M M
$$

Solving for r :

$$
r<\frac{L}{S_{0}(1-M M)}-1
$$

Example

Margin call occurs if stock return is less than:

$$
r<\frac{50,000}{150,000(1-0.35)}-1=-48.7 \%
$$

Balance sheet with - 50% return

Assets	Liab/Eq		
Stocks	75,000	Margin loan Equity	50,000
		25,000	
Total	75,000	Total	75,000
	Percent Margin $=\frac{25,000}{75,000}=33.3 \%$		

Margin Loan Rates

- It pays to shop around.
- Interactive Brokers charges
- Fed Funds rate plus 1.5\% on the first \$100,000.
- and falling further after that.
- Fidelity rate schedule

Repurchase agreements

Repurchase agreements (repos)

- Simultaneously sell a security and agree to repurchase the same, or similar, asset at a later date at an agreed price.
- A repo can be thought of as a collateralized loan
- cash borrower pays the lender interest at the repo rate.
- Initial collateral is usually greater than the notional loan amount.
- difference is a haircut or repo margin.

Repo transaction

At initiation

Cash proceeds of short sale

At termination

Repo rates

Repo rate $=$ short-term rate - collateral-specific fee

- General collateral: repo rates slightly below federal funds rate
- Special collateral: repo rates lower because cash lender (security borrower) wants a particular security
- Repo rates are lower:
- higher credit quality bonds
- more liquid bonds
- harder to find bonds

Term of repos

- Repos are short-term
- Majority are overnight
(b) Weighted by notional value

Figure 5: Percentiles of Repo Maturities

Numerical example

- A dealer needs to finance $\$ 20$ million par value of $10-$ year Treasury notes for 1 day. The current market value of the securities is $\$ 19,576,026.65$. A corporation is willing to take the other side of the repo at a repo rate of 6% with a 1% haircut.
- At initiation, the dealer surrenders the notes and receives $\$ 19,380,266.39$ ($\$ 19,576,026.65^{*} 99 \%$) in cash.
- In 1 day, the corporation returns the notes and is paid $\$ 19,383,496.43$ in cash. The interest on the cash loan is calculated as 3,230.04 (19,380,266.39 • $6 \% \cdot(1 / 360)$.

Credit risk and repos

- Both parties are exposed to credit risk.
- The cash lender is exposed to the possibility of default on the cash borrower's part.
- If the market value of the collateral declines, the lender may have a loss.
- The cash borrower is exposed to the possibility that the cash lender cannot return the collateral (if the market value of the collateral increases)

Mitigating credit risks

- The haircut is designed to protect the cash lender. If the collateral market value declines, the lender may still be made whole if the drop is less than the haircut.
- Higher haircuts for riskier borrowers and/or less liquid collateral.
- Marking-to-market
- if collateral MV declines, cash borrower can send cash or additional securities to the cash lender.
- if collateral MV increases, cash lender can send cash or the collateral securities to the cash borrower

Empirical evidence on haircuts

Figure 6: Haircuts by Collateral Type (weighted by notional value)

For next time: Short-selling + Limits to arbitrage

2RICEI BUSINESS

