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Where are we?
Last time:
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Where are we?
Last time:

Diversification: possible reduction in risk at no cost in
expected return!

Efficient frontier: set of risky asset portfolios with least
risk

Today:

Capital Allocation: Risk-free + Risky

Preferences over risk and return

Optimal portfolios
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Which return series do you prefer?
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Where would you like your portfolio to live?
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Capital Allocation
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Adding a risk-free asset
What does the set of possible portfolios look like if we combine a risky asset with a
risk-free asset?

Example: a money market savings account with a stock fund.

Expected Return:

E[ ] = wE[ ] + (1 − w) .rp rrisky rf

Variance:

var[ ] = var[ ] + (1 − w var[ ] + 2w(1 − w)cov[ , ] .rp w2 rrisky )2 rf rrisky rf

What is true of  and ?var[ ]rf cov[ , ]rrisky rf

sd[ ] = |w| ⋅ sd[ ]rp rrisky
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Capital Allocation Line
We can solve for  and substitute into the expected return def’n to obtain:w

E[ ] = + [ ] ⋅ sd[ ]rp rf

E[ ] −rrisky rf

sd[ ]rrisky
rp

The CAL for a risky asset is a set of portfolios combining the risky asset with the
risk-free asset.

The term in brackets is called the Sharpe ratio!
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Capital Allocation Line
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Tangency Portfolio
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Risk-free + Multiple Risky Assets
Let’s assume that in addition to the US stock market fund, we are also considering
investing in a long-term bond fund.
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The Tangency Portfolio Problem
Given a risk-free asset, the optimal risky portfolio is the
set of weights that maximizes the portfolio’s Sharpe
ratio.

Mathematically, choose portfolio weights to solve the
following constrained optimization problem:

subject to constraints: 

max
, ,…,w1 w2 wN

E[ ] −rp rf

sd[ ]rp

= 1∑i wi

BUSI 448



The Tangency Portfolio Problem in Python
from scipy.optimize import minimize1
n = len(MNS)2
def f(w):3
    mn = w @ MNS4
    sd = np.sqrt(w @ COV @ w)5
    return -(mn - RF) / sd6
# Initial guess (equal-weighted)7
w0 = (1/n)*np.ones(n)8
# Constraint: fully-invested portfolio9
A = np.ones(n)10
b = 111
cons = [{"type": "eq", "fun": lambda x: A @ x - b}]12
# No short-sale constraint13
bnds = [(None, None) for i in range(n)] 14
# Optimization15
TOL = 10**(-10)16
wgts = minimize(f, w0, bounds=bnds, constraints=cons, options={'ftol':TOL}).x17
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The Tangency Portfolio Problem
Allowing short sales, the tangency portfolio weights satisfy a system of equations:

where  is a constant (it is a Lagrange multiplier from the optimization problem)

cov[ , ]∑
i=1

N

r1 ri wi

cov[ , ]∑
i=1

N

r2 ri wi

cov[ , ]∑
i=1

N

rN ri wi

= δ(E[ ] − )r1 rf

= δ(E[ ] − )r2 rf

⋮

= δ(E[ ] − )rN rf

δ
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Intuition
The LHS terms are the contributions of each asset to
overall portfolio risk.

The RHS terms are proportional to each asset’s risk
premium.

The ratio of an asset’s excess return to its contribution
to overall portfolio risk is the same across all assets for
the optimal combination of risky assets!
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Theoretical tangency (no shorting
restrictions)

import numpy as np1
2

# Tangency: theoretical solution without short-sale constraint3
w = np.linalg.solve(cov, means - r)4
wgts_tangency = w / np.sum(w)5
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Preferences
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Preferences and the Capital Allocation Line
Consider the tangency portfolio’s capital allocation line.

Would you ever invest in portfolios to the right of this
line?

Where on this CAL would you invest?

Location on CAL depends on risk aversion!
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Mean-Variance Preferences
We will assume that we like expected returns and dislike
risk.

Risk aversion  measures `how much’ we dislike riskA

U( ) = E[ ] − 0.5 ⋅ A ⋅ var[ ] .rp rp rp
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Different risk aversions
When risk aversion is higher, a higher expected return is
required to reach the utility for a given level of risk, and
the extra expected return increases when risk increases.
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Indifference Curves
Investors are indifferent between portfolios that generate
the same utility.

Higher utility is achieved with either a higher expected
return or lower risk or both.
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Preferences and the Capital Allocation Line
A mean-variance investor chooses  to solve:

with .

The optimal allocation to the risky portfolio is:

Investors with different risk aversion will choose different
combinations of the risky asset and the risk-free asset.

w

E[ ] − 0.5 ⋅ A ⋅ var[ ] .max
w

rp rp

= w + (1 − w)rp rrisky rf

= .w∗
E[ − ]rrisky rf

A ⋅ varrisky
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Preferences and the Capital Allocation Line
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Risk aversion and allocation to Risky Assets
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Alternatives to mean-variance preferences
Alternatively, some investors have a either a target
expected return or target standard deviation.
If we have a target expected return, solve for :

If we have a target standard deviation, solve for :

wrisky

E[ ] = ⋅ E[ ] + (1 − ) ⋅rp wrisky rrisky wrisky rf

wrisky

sd[ ] = ⋅ sd[ ]rp wrisky rrisky

BUSI 448



Learn Investments Dashboard resources
Manual search for optimal Sharpe ratio
3-asset tangency
3-asset capital allocation
N-asset portfolios
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https://learn-investments.rice-business.org/portfolios/sharpe
https://learn-investments.rice-business.org/portfolios/tangency
https://learn-investments.rice-business.org/portfolios/optimal
https://learn-investments.rice-business.org/portfolios/optimal-N


For next time: Practical Issues in
Portfolio Optimization
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