Optimal Portfolios: Borrowing Frictions

Kevin Crotty
BUSI 448: Investments

Where are we?

Last time:

- Capital Allocation: Risk-free + Risky
- Preferences over risk and return
- Optimal portfolios

Today:

- Borrowing frictions

Borrowing frictions

Leverage constraints

Many investors (like me!) cannot borrow at the same rate at which they can lend.
In this case, the capital allocation line is not a straight line.
For most investors:

$$
r^{\text {borrow }}>r^{\text {saving }}
$$

Kinked Capital Allocation Lines

- For portfolios with some risk-free saving:

$$
E\left[r_{p}\right]=r_{f}^{\text {saving }}+\left[\frac{E\left[r_{\text {risky }}\right]-r_{f}^{\text {saving }}}{\operatorname{sd}\left[r_{\text {risky }}\right]}\right] \cdot \operatorname{sd}\left[r_{p}\right] .
$$

- For portfolios with borrowing, the capital allocation line has a lower slope:

$$
E\left[r_{p}\right]=r_{f}^{\text {borrow }}+\left[\frac{E\left[r_{\text {risky }}\right]-r_{f}^{\text {borrow }}}{\operatorname{sd}\left[r_{\text {risky }}\right]}\right] \cdot \operatorname{sd}\left[r_{p}\right] .
$$

Kinked Capital Allocation Lines

Optimal portfolios with leverage frictions

Capital allocation with leverage frictions

- Where do investors with different risk aversions choose to invest when faced with this investment opportunity set?
- The answer depends on the investor's risk aversion and the reward-risk ratios of the efficient low risk and high mean portfolios.

Capital allocation with leverage frictions

High risk aversion investors invest in the efficient low risk portfolio and save:

$$
w_{\mathrm{low}}^{*}=\frac{E\left[r_{\mathrm{low}}-r_{f}^{\mathrm{saving}}\right]}{A \cdot \operatorname{var}_{\mathrm{low}}}
$$

Low risk aversion investors invest in the efficient high mean portfolio and borrow:

$$
w_{\text {high }}^{*}=\frac{E\left[r_{\text {high }}-r_{f}^{\text {borrow }}\right]}{A \cdot \operatorname{var}_{\text {high }}} .
$$

Capital allocation with leverage frictions

Intermediate risk aversion investors invest in risky assets only.

- Can express as a two-asset portfolio of the efficient low and high risk portfolios.
- The optimal weight a^{*} in the low-risk portfolio is:

$$
a^{*}=\frac{E\left[r_{\text {low }}-r_{\text {high }}\right]-A\left(\operatorname{cov}\left[r_{\text {low }}, r_{\text {high }}\right]-\operatorname{var}\left[r_{\text {high }}\right]\right)}{A\left(\operatorname{var}\left[r_{\text {low }}\right]+\operatorname{var}\left[r_{\text {high }}\right]-2 \operatorname{cov}\left[r_{\text {low }}, r_{\text {high }}\right]\right)},
$$

- Note: $\operatorname{cov}\left[r_{\text {low }}, r_{\text {high }}\right]=w_{\text {low }}^{\prime} V w_{\text {high }}$, where $w_{\text {low }}$ and $w_{\text {high }}$ are the weights in the underlying risky assets for the efficient low-risk and high-mean portfolios, respectivesiceibusiness

Capital allocation with leverage frictions

Risky asset allocation with leverage frictions

Capital allocation: two solution methods

- Method \#1: Find risk aversion thresholds that represent low- and high-risk portfolios
- Method \#2: Directly maximize mean-variance utility using all assets, including risk-free savings and borrowings

Method \#1: Risk aversion thresholds

We can find the risk aversion thresholds for savings and borrowing by setting risky asset allocation $w^{*} \leq 1$ (savings) or $w^{*} \geq 1$ (borrowing) in the capital allocation expressions and solving for risk aversion.

- Upper risk aversion threshold: some savings if

$$
A \geq \frac{E\left[r_{\text {low }}-r_{f}\right]}{\operatorname{var}\left(r_{\text {low }}\right)}
$$

- Lower risk aversion threshold: some borrowing if

$$
A \leq \frac{E\left[r_{\text {high }}-r_{f}\right]}{\operatorname{var}\left(r_{\text {hish }}\right)} .
$$

Method \#2: Direct optimization of utility

The optimal portfolio for investor with risk aversion A solves:

$$
\max _{w_{\text {saving }}, w_{\text {borrow }}, w_{1}, w_{2}, \ldots, w_{N}} E\left[r_{p}\right]-0.5 \cdot A \cdot \operatorname{var}\left[r_{p}\right]
$$

subject to the constraints

$$
\begin{gathered}
w_{\text {saving }}+w_{\text {borrow }}+\sum_{i} w_{i}=1 \\
w_{\text {saving }} \geq 0 \\
w_{\text {borrow }} \leq 0
\end{gathered}
$$

- We need to augment the expected return vector and covariance matrix with elements for the savings and borrowing assets.

Mapping to cvxopt.solvers.qp

Recall the cvxopt. solvers. qp function's general form:

$$
\begin{aligned}
& \min _{w} \frac{1}{2} w^{\prime} Q w+p^{\prime} w \\
& \text { subject to } G w \leq h \\
& A w=b
\end{aligned}
$$

- $0.5 w^{\prime} Q w$ captures $0.5 \cdot A \cdot \operatorname{var}\left[r_{p}\right]$
- $p^{\prime} w$ captures $-E\left[r_{p}\right]$
- $G w \leq h$ captures only positive saving and negative borrowing
- $A w=b$ is the fully invested constraint

Python implementation

```
def opt_allocation2(means, cov, rf_save, rf_borrow, risk_aversion):
    n=len(means)
    Q = np.zeros((n + 2, n + 2))
    Q[2:, 2:] = risk_aversion * cov
    Q = matrix(Q, tc="d")
    p = np.array([-rf_save, -rf_borrow] + list(-means))
    p = matrix(p, (n + 2, 1), tc="d")
    # Constraint: saving weight positive, borrowing weight negative
    G = np.zeros((2, n + 2))
    G[0, 0] = -1
    G[1, 1] = 1
    G = matrix(G, (2, n+2), tc="d")
    h = matrix([0, 0], (2, 1), tc="d")
    # Constraint: fully-invested portfolio
    A = matrix(np.ones(n+2), (1, n+2), tc="d")
    b = matrix([1], (1, 1), tc="d")
    sol = Solver(Q, p, G, h, A, b)
    if sol["status"] == "optimal":
```


Learn Investments Dashboard resources

Optimal allocation with different rates

For next time: Short-sale constraints

©

