
Optimal Portfolios: Borrowing
Frictions

Kevin Crotty
BUSI 448: Investments

BUSI 448

Where are we?
Last time:

Capital Allocation: Risk-free + Risky

Preferences over risk and return

Optimal portfolios

Today:

Borrowing frictions

BUSI 448

Borrowing frictions

BUSI 448

Leverage constraints
Many investors (like me!) cannot borrow at the same rate
at which they can lend.
In this case, the capital allocation line is not a straight line.
For most investors:

>r
borrow

r
saving

BUSI 448

Kinked Capital Allocation Lines
For portfolios with some risk-free saving:

E[] = + [] ⋅ sd[] .rp r
saving
f

E[] −rrisky r
saving
f

sd[]rrisky
rp

For portfolios with borrowing, the capital allocation line
has a lower slope:

E[] = + [] ⋅ sd[] .rp rborrow
f

E[] −rrisky rborrow
f

sd[]rrisky
rp

BUSI 448

Kinked Capital Allocation Lines

0% 5% 10% 15% 20% 25% 30%

2%

3%

4%

5%

6%

7%

8%

9%

10% CAL (saving)
CAL (borrowing)
Market
Risk-free (Saving)
Risk-free (Borrowing)

Standard Deviation

Ex
pe

ct
ed

 R
et

ur
n

BUSI 448

Optimal portfolios with leverage frictions

0% 5% 10% 15%
0%

1%

2%

3%

4%

5%

6%

Stock
Bond
Stock & Bond Frontier
efficient low risk
CAL: efficient low risk
efficient high mean portfolio
CAL: efficient high mean
Risk-free (Saving)
Risk-free (Borrowing)

Standard Deviation

Ex
pe

ct
ed

 R
et

ur
n

BUSI 448

Capital allocation with leverage frictions
Where do investors with different risk aversions choose
to invest when faced with this investment opportunity
set?

The answer depends on the investor’s risk aversion and
the reward-risk ratios of the efficient low risk and high
mean portfolios.

BUSI 448

Capital allocation with leverage frictions
High risk aversion investors invest in the efficient low risk
portfolio and save:

= .w∗
low

E[−]rlow r
saving
f

A ⋅ varlow

Low risk aversion investors invest in the efficient high
mean portfolio and borrow:

= .w∗
high

E[−]rhigh rborrow
f

A ⋅ varhigh

BUSI 448

Capital allocation with leverage frictions
Intermediate risk aversion investors invest in risky assets
only.

Can express as a two-asset portfolio of the efficient low
and high risk portfolios.

The optimal weight in the low-risk portfolio is:a∗

= ,a
∗

E[−] − A(cov[,] − var[])rlow rhigh rlow rhigh rhigh

A(var[] + var[] − 2cov[,])rlow rhigh rlow rhigh

Note: , where and
are the weights in the underlying risky assets for the
efficient low-risk and high-mean portfolios, respectively.

cov[,] = Vrlow rhigh w′
low whigh wlow whigh

BUSI 448

Capital allocation with leverage frictions

0% 5% 10% 15%
0%

1%

2%

3%

4%

5%

6%

7%

Stock
Bond
Stock & Bond Frontier
efficient low risk portfolio
CAL: efficient low risk portfolio
efficient high mean portfolio
CAL: efficient high mean
Risk Aversion=2
Risk Aversion=5

Standard Deviation

Ex
pe

ct
ed

 R
et

ur
n

BUSI 448

Risky asset allocation with leverage frictions

5 10 15

100.0%

200.0%

300.0%

400.0%

500.0%

600.0%

700.0%

Risk Aversion

W
ei

gh
t

in
 R

is
ky

 A
ss

et
s

BUSI 448

Capital allocation: two solution methods
Method #1: Find risk aversion thresholds that represent
low- and high-risk portfolios

Method #2: Directly maximize mean-variance utility
using all assets, including risk-free savings and
borrowings

BUSI 448

Method #1: Risk aversion thresholds
We can find the risk aversion thresholds for savings and
borrowing by setting risky asset allocation
(savings) or (borrowing) in the capital allocation
expressions and solving for risk aversion.

≤ 1w∗

≥ 1w∗

Upper risk aversion threshold: some savings if

A ≥ .
E[−]rlow rf

var()rlow

Lower risk aversion threshold: some borrowing if

A ≤ .
E[−]rhigh rf

var()rhigh
BUSI 448

Method #2: Direct optimization of utility
The optimal portfolio for investor with risk aversion solves:

subject to the constraints

A

E[] − 0.5 ⋅ A ⋅ var[]max
, , , ,…,wsaving wborrow w1 w2 wN

rp rp

+ + = 1,wsaving wborrow ∑
i

wi

≥ 0,wsaving

≤ 0.wborrow

We need to augment the expected return vector and covariance matrix with
elements for the savings and borrowing assets.

BUSI 448

Mapping to cvxopt.solvers.qp
Recall the cvxopt.solvers.qp function’s general form:

min
w

subject to

Qw + w
1

2
w′ p′

Gw ≤ h

Aw = b

 captures 0.5 Qww′ 0.5 ⋅ A ⋅ var[]rp

 captures wp′ −E[]rp

 captures only positive saving and negative borrowingGw ≤ h

 is the fully invested constraintAw = b

BUSI 448

Python implementation
def opt_allocation2(means, cov, rf_save, rf_borrow, risk_aversion):1
 n=len(means)2
 Q = np.zeros((n + 2, n + 2))3
 Q[2:, 2:] = risk_aversion * cov4
 Q = matrix(Q, tc="d")5
 p = np.array([-rf_save, -rf_borrow] + list(-means))6
 p = matrix(p, (n + 2, 1), tc="d")7
 # Constraint: saving weight positive, borrowing weight negative8
 G = np.zeros((2, n + 2))9
 G[0, 0] = -110
 G[1, 1] = 111
 G = matrix(G, (2, n+2), tc="d")12
 h = matrix([0, 0], (2, 1), tc="d")13
 # Constraint: fully-invested portfolio14
 A = matrix(np.ones(n+2), (1, n+2), tc="d")15
 b = matrix([1], (1, 1), tc="d")16
 sol = Solver(Q, p, G, h, A, b)17
 if sol["status"] == "optimal":18

wgts optimal np array(sol["x"]) flatten()19

def opt_allocation2(means, cov, rf_save, rf_borrow, risk_aversion):1
 n=len(means)2
 Q = np.zeros((n + 2, n + 2))3
 Q[2:, 2:] = risk_aversion * cov4
 Q = matrix(Q, tc="d")5
 p = np.array([-rf_save, -rf_borrow] + list(-means))6
 p = matrix(p, (n + 2, 1), tc="d")7
 # Constraint: saving weight positive, borrowing weight negative8
 G = np.zeros((2, n + 2))9
 G[0, 0] = -110
 G[1, 1] = 111
 G = matrix(G, (2, n+2), tc="d")12
 h = matrix([0, 0], (2, 1), tc="d")13
 # Constraint: fully-invested portfolio14
 A = matrix(np.ones(n+2), (1, n+2), tc="d")15
 b = matrix([1], (1, 1), tc="d")16
 sol = Solver(Q, p, G, h, A, b)17
 if sol["status"] == "optimal":18

wgts optimal np array(sol["x"]) flatten()19

def opt_allocation2(means, cov, rf_save, rf_borrow, risk_aversion):1
 n=len(means)2
 Q = np.zeros((n + 2, n + 2))3
 Q[2:, 2:] = risk_aversion * cov4
 Q = matrix(Q, tc="d")5
 p = np.array([-rf_save, -rf_borrow] + list(-means))6
 p = matrix(p, (n + 2, 1), tc="d")7
 # Constraint: saving weight positive, borrowing weight negative8
 G = np.zeros((2, n + 2))9
 G[0, 0] = -110
 G[1, 1] = 111
 G = matrix(G, (2, n+2), tc="d")12
 h = matrix([0, 0], (2, 1), tc="d")13
 # Constraint: fully-invested portfolio14
 A = matrix(np.ones(n+2), (1, n+2), tc="d")15
 b = matrix([1], (1, 1), tc="d")16
 sol = Solver(Q, p, G, h, A, b)17
 if sol["status"] == "optimal":18

wgts optimal np array(sol["x"]) flatten()19

def opt_allocation2(means, cov, rf_save, rf_borrow, risk_aversion):1
 n=len(means)2
 Q = np.zeros((n + 2, n + 2))3
 Q[2:, 2:] = risk_aversion * cov4
 Q = matrix(Q, tc="d")5
 p = np.array([-rf_save, -rf_borrow] + list(-means))6
 p = matrix(p, (n + 2, 1), tc="d")7
 # Constraint: saving weight positive, borrowing weight negative8
 G = np.zeros((2, n + 2))9
 G[0, 0] = -110
 G[1, 1] = 111
 G = matrix(G, (2, n+2), tc="d")12
 h = matrix([0, 0], (2, 1), tc="d")13
 # Constraint: fully-invested portfolio14
 A = matrix(np.ones(n+2), (1, n+2), tc="d")15
 b = matrix([1], (1, 1), tc="d")16
 sol = Solver(Q, p, G, h, A, b)17
 if sol["status"] == "optimal":18

wgts optimal np array(sol["x"]) flatten()19

def opt_allocation2(means, cov, rf_save, rf_borrow, risk_aversion):1
 n=len(means)2
 Q = np.zeros((n + 2, n + 2))3
 Q[2:, 2:] = risk_aversion * cov4
 Q = matrix(Q, tc="d")5
 p = np.array([-rf_save, -rf_borrow] + list(-means))6
 p = matrix(p, (n + 2, 1), tc="d")7
 # Constraint: saving weight positive, borrowing weight negative8
 G = np.zeros((2, n + 2))9
 G[0, 0] = -110
 G[1, 1] = 111
 G = matrix(G, (2, n+2), tc="d")12
 h = matrix([0, 0], (2, 1), tc="d")13
 # Constraint: fully-invested portfolio14
 A = matrix(np.ones(n+2), (1, n+2), tc="d")15
 b = matrix([1], (1, 1), tc="d")16
 sol = Solver(Q, p, G, h, A, b)17
 if sol["status"] == "optimal":18

wgts optimal np array(sol["x"]) flatten()19

BUSI 448

Learn Investments Dashboard resources
Optimal allocation with different rates

BUSI 448

https://learn-investments.rice-business.org/portfolios/optimal-two-rates

For next time: Short-sale constraints

BUSI 448

