

Kevin Crotty BUSI 448: Investments

Where are we?

Last time:

- Market Model Regressions
- Alphas and Betas
- Estimating Covariance Matrix

Today:

- CAPM and the Market Model Regression
- CAPM: Theory
- CAPM: Practice

CAPM and the Market Model Regression

What is the CAPM?

- The Capital Asset Pricing Model (CAPM) is a theory from the 1960s. Its discoverer won the Nobel prize in economics.
- The intuition is:
 - Market risk is the biggest risk that a diversified investor faces.
 - The risk of each asset should be measured in terms of how much it contributes to market risk.
 - The risk premium of each asset should depend (linearly) on this measure of risk.

Capital Asset Pricing Model

$$E[r_i - r_f] = eta_i \cdot E[r_m - r_f]$$

E[*r_m* - *r_f*] is the market risk premium
 β_i = ^{cov(r_i,r_m)}/_{var(r_m)}

Empirically, we estimate a **market model regression**:

$$r_{i,t} - r_{f,t} = lpha_i + eta_i (r_{m,t} - r_{f,t}) + arepsilon_{i,t}$$

• What differs between the top and bottom equations?

Theory: CAPM

CAPM Assumptions

- Investors have **identical** beliefs about the **same universe** of asset returns
- Investors have **mean-variance** preferences
- Single period investment horizon

CAPM Assumptions

- Frictionless borrowing and lending
 - borrowing rate = savings rate
- Frictionless trading
 - no transactions costs & no taxation & shorting allowed
- **Perfect competition**: investors are price-takers

Equilibrium

- All investors view the market portfolio as the tangency portfolio.
- The capital allocation line with respect to the market portfolio is called the **capital market line**
- Investors save or borrow at the risk-free rate to locate on the CML according to their risk aversion.
- Prices will adjust so that the marginal benefit of an asset (its risk premium) is proportional to its marginal contribution to the risk of the *market portfolio*.

Deriving the CAPM (1/3)

Recall that the tangency portfolio in a frictionless setting satisfies:

$$\sum_{i=1}^N \operatorname{cov}[r_1,r_i] w_i = \delta(E[r_1]-r_f) \ \sum_{i=1}^N \operatorname{cov}[r_2,r_i] w_i = \delta(E[r_2]-r_f) \ dots \ \sum_{i=1}^N \operatorname{cov}[r_N,r_i] w_i = \delta(E[r_N]-r_f)$$

where δ is a constant (it is a Lagrange multiplier from the optimization problem)

- The LHS terms are the contributions of each asset to overall portfolio risk.
- The RHS terms are proportional to each asset's risk premium.

Deriving the CAPM (2/3)

- Previously: we solved the system for weights
- CAPM: solve for expected returns using market weights

For asset *j*:

$$\sum_{i=1}^N \operatorname{cov}[r_j,r_i] w_i = \delta(E[r_j]-r_f)$$

Rearrange and use the fact that $r_m = \sum_i w_i r_i$ to get:

$$E[r_j-r_f]=\delta^{-1}{
m cov}[r_j,r_m]$$

Deriving the CAPM (3/3)

Using the definition of beta:

$$E[r_j - r_f] = \delta^{-1} eta_j \mathrm{var}[r_m] \,.$$

Now aggregate this at market weights:

$$\sum_j w_j \cdot E[r_j - r_f] = \delta^{-1} \mathrm{var}[r_m] \sum_j w_j \cdot eta_j$$

This implies $\delta = var[r_m]/E[r_m - r_f]$, so we arrive at the CAPM formula:

$$E[r_j - r_f] = \beta_j E[r_m - r_f].$$

Intuition of the equilibium

- The marginal benefit of an asset (its risk premium) is proportional to its marginal contribution to the risk of the *market portfolio*
- The marginal contribution to risk is measured by beta.

What if this weren't the case?

- If an asset's reward to risk contribution ratio is higher than ratios for other assets, what would you do?
 - Hold the asset at a greater weight, reducing weights in others.
 - But purchasing would push price up and return down until all investments had the same reward-to-risk-contribution ratio.

Practice: CAPM

CAPM and Corporate Finance

- The CAPM is widely used to estimate expected returns to compute discount factors for corporate investment projects.
 - The return shareholders expect is $r_f + \beta_i \cdot E[r_m r_f]$.
 - This is the required return on equity capital for corporate projects.
 - aka cost of equity capital

Website

CAPM and Investments

- The CAPM is somewhat less useful in an investments context.
 - What are the inputs for r_f and $E[r_m r_f]$?
 - Estimating inputs can be too noisy
 - Doesn't describe the cross-section of equity returns well

Estimating the market risk premium

- Empirically, this is challenging.
- An additional complication: the MRP is likely timevarying.

Historical average market risk premium

• One option is to use the **realized** average:

$$rac{1}{T}\sum_t (r_{m,t}-r_{f,t})$$

as an estimate of the **expected** market risk premium

- Sample means are noisy estimates of population means
 - Need a large *T* sample
 - Precision of estimate doesn't improve with sampling data more frequently.

Precision of historical average

- Standard error = SD/\sqrt{T}
 - Annual SD of market return of 20%:

Years of Data	Standard Error of Estimates
5	8.94%
10	6.32%
25	4.00%
50	2.83%
100	2.00%

Visualization

RICE | BUSINESS

Security market line

The **security market line** is the visual representation of the CAPM and the cross-section of expected returns

Security Market Line (no alpha)

BUSI 448

The CAPM and cross-sectional data

- The CAPM doesn't fit realized returns in the crosssection of stocks very well.
- Theoretically, the slope of the SML should be:
 - $E[r_m r_f]$
- Empirically, the slope is much flatter than the realized market risk premium.

Industry returns example

- A simple example is industry returns.
- Average returns are mostly unrelated to betas.

Website example

In-class notebook version

Let's look at what this webpage is doing.

For next time: Predictability in the Cross-Section of Returns

