Fixed Income: Duration

Kevin Crotty
BUSI 448: Investments

Where are we?

Last time:

- Equity asset pricing models
- Multifactor models

Today:

- Interest rate risk
- Duration

Fixed Income Topics

- Interest rate risk
- Duration
- Convexity
- Credit risk
- Leverage
- Ratings
- Credit default swaps
- Reinvestment risk

Bond pricing refresher

$$
P=\frac{C F_{1}}{(1+y / m)}+\frac{C F_{2}}{(1+y / m)^{2}}+\ldots+\frac{C F_{T}}{(1+y / m)^{T}}
$$

- m : number of payments per year
- y / m : per period yield (i.e., the discount rate)

For bonds, the cash flows are usually fixed coupon payments, so this reduces to:

$$
P=\frac{C}{(1+y / m)}+\frac{C}{(1+y / m)^{2}}+\ldots+\frac{C+F A C E}{(1+y / m)^{T}}
$$

where C is the coupon payment of the bond.

Interest Rate Risk

Duration defined

$$
P=\frac{C}{(1+D R)}+\frac{C}{(1+D R)^{2}}+\frac{C}{(1+D R)^{3}}+\ldots+\frac{C+F A C E}{(1+D R)^{T}}
$$

We can rewrite this as:

$$
P=P V\left(C F_{t_{1}}\right)+P V\left(C F_{t_{2}}\right)+P V\left(C F_{t_{3}}\right)+\ldots+P V\left(C F_{t_{T}}\right)
$$

where t_{1} is the time of the first cash-flow in years.
Now divide both sides by P :

$$
1=\frac{P V\left(C F_{t_{1}}\right)}{P}+\frac{P V\left(C F_{t_{2}}\right)}{P}+\frac{P V\left(C F_{t_{3}}\right)}{P}+\ldots+\frac{P V\left(C F_{t_{T}}\right)}{P}
$$

Each term on the RHS is a weight!

Duration defined

- Duration is a weighted-average time to cash flows.
- The weights are the fraction of the total PV (the price) that is due to the cash flows at each time.

$$
\text { duration }=\left[\frac{P V\left(C F_{t_{1}}\right)}{P}\right] \cdot t_{1}+\left[\frac{P V\left(C F_{t_{2}}\right)}{P}\right] \cdot t_{2}+\ldots+\left[\frac{P V\left(C F_{t_{T}}\right)}{P}\right] \cdot t_{T}
$$

Duration visualized

Time of CF (in years)

What happens to duration as:

- Maturity increases?
- Coupon rate increases?

Duration is related to interest rate risk!

For a change in yield y of Δy, the percent change in price is:

$$
\frac{\Delta P}{P} \approx-\left[\frac{\text { duration }}{1+D R}\right] \cdot \Delta y
$$

The term in brackets is modified duration.
Alternatively, we can work in prices rather than returns:

$$
P_{\mathrm{new}} \approx P_{0}-P_{0} \cdot\left[\frac{\text { duration }}{1+D R}\right] \cdot \Delta y
$$

Let's go to today's notebook and calculate duration

Duration and the bond pricing function

Interest Rate Risk

How good is this approximation?

Consider two bonds with

- Same YTM of 10%
- Same coupon rate of 5%
- Different maturities of 5 and 10 years

Let's look at how well the duration approximation works for different yield change magnitudes.

Drawbacks of duration

- Duration is a linear approximation.
- It can be improved using curvature of pricing function (convexity).
- Also, price risk is not the only risk associated with rate changes.
- reinvestment risk!

Duration and reinvestment risk

Consider a rate decline from 10% to 9%

Reinvestment risk

The risk that interest payments cannot be reinvested at the same rate.

- If rates fall
- bond prices rise
- but the value of reinvested coupons falls.

When investment horizon matches duration, reinvestment risk and interest rate risk cancel out!

An example

- Suppose you need to pay out \$X at year 5 (think of a pension company).
- What is your investment strategy, using bonds, that ensures that you can meet your obligation?
- Best bet is to buy a zero-coupon bond maturing in 5 years
- If unavailable, buy a bond with duration of 5 years

Duration tells us three very useful things

- Effective maturity of a bond
- Interest rate risk (sensitivity of bond prices to rate changes)
- Horizon at which interest rate risk and reinvestment risk cancel out

For next time: Convexity

? RICEIBUSINESS

