Fixed Income: Convexity

Kevin Crotty
BUSI 448: Investments

Where are we?

Last time:

- Interest rate risk
- Duration

Today:

- More interest rate risk
- Convexity
- Callable bonds

Convexity

Interest rate risk and duration

- Duration allows a linear approximation of the price-yield relationship
- Where and why is it a bad approximation?

Moving beyond the linear approximation

- Can we improve on the relationship?
- Hint: think back to your math classes

$$
P(y+\Delta y) \approx P(y)+\frac{d P}{d y} \cdot \Delta y+0.5 \cdot \frac{d^{2} P}{d y^{2}} \cdot(\Delta y)^{2} .
$$

Expressed in returns, rather than prices:

$$
\frac{\Delta P}{P(y)} \approx \frac{1}{P} \cdot \frac{d P}{d y} \cdot \Delta y+0.5 \frac{1}{P} \frac{d^{2} P}{d y^{2}} \cdot(\Delta y)^{2} .
$$

Convexity

- Convexity captures curvature of the pricing function
- second derivative of price w.r.t. yield, scaled by price.

$$
\text { convexity }=\frac{1}{P} \cdot \frac{d^{2} P}{d y^{2}}
$$

- For coupon bonds,

$$
\text { convexity }=\frac{1}{(1+y / m)^{2}}\left[\sum_{i=1}^{T} \frac{i(i+1)}{m^{2}} \cdot \frac{P V\left(C F_{t_{i}}\right)}{P}\right]
$$

Price and return approximations

The second-order price approximation is:

$$
P(y+\Delta y) \approx P(y)-\text { mduration } \cdot P(y) \cdot \Delta y+0.5 \cdot \text { convexity } \cdot P(y) \cdot(\Delta y)^{2} .
$$

The second-order return approximation is:

$$
\frac{\Delta P}{P(y)} \approx-\text { mduration } \cdot \Delta y+0.5 \cdot \text { convexity } \cdot(\Delta y)^{2} .
$$

- Let's take a look at today's notebook to see how this approximation performs.

Desirability of convexity

Positive convexity is desirable for investors

- For a fixed rate change magnitude, bond prices rise when rates fall by more than they fall when rates rise
- Example: coupon bonds

Negative convexity is undesirable for investors

- Instead, bond issuers like negative convexity
- Examples: callable bonds, mortgages

Callable Bonds

Call Schedules

Callable bond: the issuer has the right to call (repurchase) the bond at specified times at pre-determined price(s)

- usually a call schedule with call prices at specified call dates
- first call price may be at premium over par value
- call prices step down toward par later in call schedule
- investors may be protected against call for an initial window
- issuers usually offer a higher coupon as compensation for the call option

Interest rate risk

If rates fall,

- the bond price rises,
- the PV of future payment obligations for the firm may exceed the call price of the bond,
- the issuer benefits from calling the bond and reissuing debt at a lower coupon rate.

This creates a ceiling for the bond value at the call price.

Callable vs. straight bond prices

Interest rate risk

At low interest rates, callable debt exhibits negative convexity.

- For a fixed rate change magnitude, bond prices rise when rates fall by less than they fall when rates rise
- this is undesirable for investors (hence higher coupon rates as compensation)

An aside: Yield to Call

We can calculate the IRR of paying today's price and receiving cash flows to a call date:

$$
P=\sum_{t=1}^{T_{\text {call }}} \frac{C}{\left(1+\frac{y_{\text {call }}}{m}\right)^{t}}+\frac{\text { Call Price }}{\left(1+\frac{y_{\text {call }}}{m}\right)^{T_{\text {call }}}}
$$

- $y_{\text {call }}$: the annual yield-to-call
- $T_{\text {call }}$: number of periods until the assumed call date
- m : number of payments per year

Estimating Duration and Convexity

Modified Duration

- Suppose we observe prices at three yields
- $P_{0} \equiv P\left(y_{0}\right)$
- $P_{+} \equiv P\left(y_{0}+\Delta y\right)$
- $P_{-} \equiv P\left(y_{0}-\Delta y\right)$

An empirical estimate of modified duration at y_{0} is:

$$
\widehat{\text { mduration }}=\frac{1}{P_{0}} \frac{P_{-}-P_{+}}{2 \Delta y}
$$

Convexity

An empirical estimate of convexity at y_{0} is:

$$
\text { convexity }=\frac{1}{P_{0}} \frac{\left(P_{-}-P_{0}\right)-\left(P_{0}-P_{+}\right)}{(\Delta y)^{2}} .
$$

For next time: Credit Risk

? RICEIBUSINESS

